

Walmart $:_{1}^{\prime}$

$\mathbf{B}\|\mathbf{R}\| \mathrm{R}$	March 09, 2017	Alachua, FL \#3873-New Store	\quad Overall Perspective

Garden Center View

Multi-Tenant Sign Front Elevation

Walmart 冷

$\mathrm{B}\|\mathrm{R}\| \mathrm{R}$	March 09, 2017

Walmart:

$\mathrm{B}\|\mathrm{R}\| \mathrm{R}$	March 09, 2017	Alachua, FL \#3873- New Store	Pick Up Canopy

$\mathbf{B}\|\mathbf{R}\| \mathbf{R}$	January 25, 2017	Alachua, FL \#3873	Building Elevations

ELIGIBLE AREA UNDER ROOFLINE FOR WINDOWS INTO BUILDING = 10, 198 SF OF FRONT FAÇADE 10, 198 SF X $.20=2040$ SF OF GLASS REQUIRED

Front Elevation (North)
STORAGE

EIFS cornice painted EEIFS painted "Sensation "Creamy" SW 7102

EIIFS painted
Sand" SW 60 Archtectural masonry to Quik Brik

ASS CALCULATIONS: (LEFT TO RIGHT)
CART STORAGE: $9-6^{\prime}-0^{\prime \prime} \times 6^{\prime}-8^{\prime \prime}$ WINDOWS $=362$ SF
GROCERY VESTIBULE: $1-24^{\prime}-0^{\prime \prime} \times 7^{\prime}-0^{\prime \prime}$ GLASS SLIDING DOOR $+1-24^{\prime}-0^{\prime \prime} \times 4^{\prime}-0^{\prime \prime}$ TRANSOM $+1-24^{\prime}-0^{\prime \prime} \times 8^{\prime}-8^{\prime \prime}$ CLERESTORY WINDOW $=168^{\prime}+96+208=472$ SF LIQUOR BOX: $1-8^{\prime}-0^{\prime \prime}$ X $9^{\prime}-4^{\prime \prime}$ SLIDING GLASS DOOR $+3-6^{\prime}-0^{\prime \prime}$ X $6^{\prime}-8^{\prime \prime}$ WINDOWS $=195$ SF TENANT SPACE: $2-6^{\prime}-0^{\prime \prime} \times 6^{\prime}-8^{\prime \prime}$ WINDOWS $=80$ SF

HOME AND PHARMACY VESTIBULE: $1-24^{\prime}-0^{\prime \prime} \times 7^{\prime}-0^{\prime \prime}$ GLASS SLIDING DOOR $+1-24^{\prime}-0^{\prime \prime}$ X $4^{\prime}-0^{\prime \prime}$ TRANSOM $+1-24^{\prime}-0^{\prime \prime}$ X $8^{\prime}-8^{\prime \prime}$ CLERESTORY WINDOW $=168+96^{\prime}+208=472$ SF CART STORAGE: $3-6^{\prime}-0^{\prime \prime} \times 6^{\prime}-8^{\prime \prime}$ WINDOWS $=120$ SF

OPTICAL DEPARTMENT - $1-44^{\prime}-0^{\prime \prime} \times 6^{\prime}-8^{\prime \prime}$ AND $1-6^{\prime}-0^{\prime \prime} \times 6^{\prime}-8^{\prime \prime}$ WINDOW = 67 SF

Walmart $>1:$

GARDEN CENTER - $1-12^{\prime}-0^{\prime \prime} \times 9^{\prime}-4^{\prime \prime}$ SLIDING DOOR $+3-8^{\prime}-0^{\prime \prime} \times 5^{\prime}-8^{\prime \prime}$ WINDOWS $+1-8^{\prime}-0^{\prime \prime} \times 8^{\prime}-0^{\prime \prime}$ WINDOW = 331 SF
TOTALS $=362+422+195+80+472+120+67+294=2099$ SF PROVIDED 2099 DIVIDED BY 10198 = 20.58\%

$\mathbf{B}\|\mathbf{R}\| \mathbf{R}$	January 25, 2017	Alachua, FL \#3873	Front Elevation Glass Calculation

TOTAL FRONT FAÇADE AREA $=14,624$ SF. $14,624 \times .20=2,925$ SF OF BRICK REQUIRED

TOTAL SF OF BRICK PROVIDED = 3343.57 OR 22.86\%

Walmart $=1 /=$

$\mathbf{B}\|\mathbf{R}\| \mathbf{R}$	January 25, 2017	Alachua, FL \#3873	Front Elevation Brick Calculation

$\mathbf{B}\|\mathbf{R}\| \mathbf{R}$	January 25, 2017	Alachua, FL \#3873	Left Elevation Glass Calculation

TOTAL AREA OF SIDE FAÇADE $=\mathbf{7 , 5 5 1 . 2 1 S F} \quad 7,551.21$ SF X $\mathbf{2 0}=\mathbf{1 , 5 1 0 . 2 4 ~ S F}$ OF BRICK
REQUIRED

TOTAL SF OF BRICK HIGHLIGHTED IN ORANGE ON THIS FAÇADE = 1,724 SF OR 22.83\%

Walmart $=1$,

$\mathbf{B}\|\mathbf{R}\| \mathbf{R}$	January 25, 2017	Alachua, FL \#3873	Left Elevation Brick Calculation

Product Specifications: Quik-Brik

This is a sample specification. The actual project specifications must take into account specific requirements for the project and local construction practices. All the information contained in this sample specification is offered as guidance for proper construction of masonry assemblies and is intended to comply with appropriate industry standards and practices. Final selection or use of any or all of this information is the sole responsibility of the Owner and his/her agents.

PART I - GENERAL

1.01 - SUMMARY

A. Section Includes:

1. Custom concrete masonry units (CMU), Quik-Brik*.
2. Reinforcement, anchorages, and accessories
3. Masonry fill insulation
B. Work Installed But Not Furnished Under This Section:
4. Support plates and angles with anchor studs.
5. Sleeve anchors.
6. Expansion bolts.
7. Adhesive anchors.
8. Anchor bolts which are embedded in masonry for supporting structural members.
C. Related Sections:
9. Section 04060 - Masonry Mortar.
10. Section 04070 - Masonry Grout.
11. Section 04220 - Concrete Masonry Units.
12. Section 05120 - Structural Steel: Support plates and angles with anchor studs, expansion bolts, sleeve anchors,
adhesive anchors, and anchor bolts embedded in masonry for supporting structural members.
13. Section 05500 - Metal Fabrications: Loose steel lintels and other metal components embedded in masonry.
14. Section 07900 - Joint Sealer: Rod and sealant at control joints.

1.02 - REFERENCES

A. American Concrete Institute (ACI):

1. ACI 117-90 - Standard Specifications for Tolerances for Concrete Construction and Materials.
2. ACI 530-99 - Building Code Requirements for Masonry Structures.
3. ACI 530.1-99 - Specification for Masonry Structures.
B. American Society for Testing and Materials (ASTM):
4. ASTM A 82 - Specification for Steel Wire, Plain, for Concrete Reinforcement.
5. ASTM A 153 - Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware.
6. ASTM A 307 - Specification for Carbon Steel Bolts and Studs, 60,000 psi Tensile Strength.
7. ASTM A 615-Specification for Deformed and Plain Billet-Steel Bars for Concrete Reinforcement.
8. ASTM A 951 - Specification for Masonry Joint Reinforcement.
9. ASTM C 90 - Specification for Loadbearing Concrete Masonry Units,
10. ASTM C 129 - Specification for Non-Load-Bearing Concrete Masonry Units.
11. ASTM C 140 - Methods of Sampling and Testing Concrete Masonry Units.
12. ASTM C 516 - Specification for Vermiculite Loose Fill Thermal Insulation.
13. ASTM C 549 - Specification for Perlite Loose Fill Insulation.
14. ASTM C 920 - Specification for Elastomeric Joint Sealants.
15. ASTM D 994 - Specification for Preformed Expansion Joint Filler for Concrete (Bituminous).
16. ASTM D 1056 - Specification for Flexible Cellular Materials - Sponge or Expanded Rubber.
17. ASTM D 2000 - Classification System for Rubber Products in Automotive Applications.
18. ASTM D 2287 - Specification for Nonrigid Vinyl Chloride Polymer and Copolymer Molding and Extrusion Compounds.
C. Masonry Industry Council (MIC): Hot and Cold Weather Masonry Construction.

1.03 - SUBMITTALS

A. Section 01330 -Submittal Requirements: Procedures for submittals.

1.04 - QUALITY ASSURANCE

A. Construction: Construct masonry in accordance with requirements of TMS 402-11/ACI 530-11/ASCE 5-11 and TMS 602-11/ACI 530.1-11/ASCE 6-11.
B. Special Inspection and Testing: Provide inspection and testing in accordance with the Building Code and as noted on drawings and will be performed under provisions of Section 01450.
C. Mock-up: Construct a masonry wall panel to represent the exterior masonry wall.

1. Construct wall at least 4 feet long by 4 feet high.
2. Locate where directed by Architect/Owner's Representative.
3. Include reinforcing and minimum of one control joint and one outside corner.
4. Include joint profile and mortar color.
5. Erect entire mock-up with methods representative of daily construction and in-progress cleaning practices.
6. Clean one-half of mock-up to represent final clean down using methods and materials in accordance with the cleaning requirements herein and leave remainder without final cleaning for comparison purposes.
7. Receive acceptance of mock-up by Architect/Owner's Representative before proceeding with masonry installation.
8. When accepted, mock-up will be used as standard of quality for masonry work.
9. Leave field sample in place until project completion.
10. Mock-up may not remain as part of the work.
11. Provide on-site inspection by Oldcastle Architectural Products Group (APG) representative of mock-up construction and cleaning and submit manufacturer's letter of approval of the work procedures and the completed mock-up.

1.05 - DELIVERY, STORAGE and HANDLING

A. Damaged Components:

1. DO NOT use damaged masonry units.
2. DO NOT use damaged components of structure.
3. DO NOT use damaged packaged materials.
4. DO NOT use masonry units that are contaminated.
B. Storage:
5. Store different aggregates separately.
6. Protect reinforcement, ties, and metal accessories from permanent distortions.
7. Store reinforcement, ties, and metal accessories off the ground.
C. Cleaning Reinforcement:
8. Before being placed, remove loose rust, ice, and other deleterious coatings from reinforcement.

1.06 - PROJECT CONDITIONS

A. Environmental Requirements (Cold Weather): Follow the requirements of the TMS 602-11, Section 1.8 C -Cold Weather Construction. Include the following construction requirements for cold weather procedures:

1. When ambient air temperatures are above $40^{\circ} \mathrm{F}$ cover tops of walls and masonry elements with plastic or canvas at end of workday to prevent water from entering masonry.
2. When ambient air temperatures are below $40^{\circ} \mathrm{F}$ and above $32^{\circ} \mathrm{F}$ or temperature of masonry units is below $40^{\circ} \mathrm{F}$:
a. Remove visible ice on masonry units before units are placed in the wall.
b. DO NOT lay masonry units having a temperature below $20^{\circ} \mathrm{F}$.
c. Heat sand and mixing water to produce mortar temperatures between $40^{\circ} \mathrm{F}$ and $120^{\circ} \mathrm{F}$ at the time of mixing.
d. Maintain mortar and grout temperatures above freezing until used in masonry.
e. Cover tops of walls and masonry elements with weather resistive membrane at end of workday to prevent water from entering masonry.
3. When ambient air temperatures are below $32^{\circ} \mathrm{F}$ and above $25^{\circ} \mathrm{F}$ or temperature of masonry units is below $40^{\circ} \mathrm{F}$:
a. Remove visible ice on masonry units before units are placed in the wall.
b. DO NOT lay masonry units having a temperature below $20^{\circ} \mathrm{F}$.
c. Heat sand and mixing water to produce mortar temperatures between $40^{\circ} \mathrm{F}$ and $120^{\circ} \mathrm{F}$ at the time of mixing.
d. Maintain mortar and grout temperatures above freezing until used in masonry.
e. Completely cover walls and masonry elements with weather resistive membrane at end of work day and keep covers in place for 24 hours.
4. When ambient air temperature is below $25^{\circ} \mathrm{F}$ and above $20^{\circ} \mathrm{F}$:
a. Remove visible ice on masonry units before units are placed in the wall.
b. DO NOT lay masonry units having a temperature below $20^{\circ} \mathrm{F}$.

ECHELON

c. Heat sand and mixing water to produce mortar temperatures between $40^{\circ} \mathrm{F}$ and $120^{\circ} \mathrm{F}$ at the time of mixing.
d. Maintain mortar and grout temperatures above freezing until used in masonry.
e. Use heat source on both sides of masonry under construction.
f. Install wind breaks when wind velocity is in excess of 15 mph .
g. Completely cover walls and masonry elements with insulated blankets or equivalent protection at end of workday and keep covers in place for 24 hours.
05 . When ambient temperature is below $20^{\circ} \mathrm{F}$:
a. Remove visible ice on masonry units before units are placed in the wall.
b. DO NOT lay masonry units having a temperature below $20^{\circ} \mathrm{F}$.
c. Heat sand and mixing water to produce mortar temperatures between $40^{\circ} \mathrm{F}$ and $120^{\circ} \mathrm{F}$ at the time of mixing.
d. Maintain mortar and grout temperatures above freezing until used in masonry.
e. Provide an enclosure for the masonry under construction.
f. Use heat sources to maintain temperatures above $32^{\circ} \mathrm{F}$ within the enclosure.
g. Maintain masonry temperature above $32^{\circ} \mathrm{F}$ for 24 hours after construction by enclosure with supplementary heat, electric heating blankets, infrared heat lamps, or other acceptable methods.
B. Environmental Requirements (Hot Weather): Follow the requirements of the TMS 602-11. Section 1.8 D - Cold Weather

Construction. Include the following construction requirements for hot weather procedures:

1. When ambient temperature is above $115^{\circ} \mathrm{F}$ or ambient air temperature is above $105^{\circ} \mathrm{F}$ and wind velocity exceeds 8 mph :
a. Shade materials and mixing equipment from direct sunlight.
b. Maintain sand piles in damp loose condition.
c. Provide necessary conditions and equipment to produce mortar and grout having temperatures below $120^{\circ} \mathrm{F}$.
d. Use cool mixing water for mortar and grout.
e. Maintain temperatures of mortar and grout below $120^{\circ} \mathrm{F}$.
f. Flush mixer, mortar and grout transport container, and mortarboards with cool water before they come in contact with mortar or grout.
g. Maintain mortar consistency by re-tempering with cool water.
h. Use mortar within 2 hours of initial mixing.
i. Fog spray all newly constructed masonry until damp, at least three times a day until the masonry is 3-days old.
2. When ambient temperature is above $100^{\circ} \mathrm{F}$ or ambient air temperature is above $90^{\circ} \mathrm{F}$ and wind velocity exceeds 8 mph :
a. Maintain sand piles in damp loose condition.
b. Provide necessary conditions and equipment to produce and maintain mortar and grout having temperatures below $120^{\circ} \mathrm{F}$.
c. Maintain mortar and grout temperatures below $120^{\circ} \mathrm{F}$.
d. Flush mixer, mortar and grout transport container, and mortarboards with cool water before the come in contact with mortar or grout.
e. Maintain mortar consistency by re-tempering with cool water.
f. Use mortar within 2 hours of initial mixing.
g. Fog spray all newly constructed masonry until damp, at least three times a day until the masonry is three days old.

PART II - PRODUCTS

2.01 - QUIK-BRIK (CONCRETE MASONRY UNITS)
A. Integrally Pigmented Loadbearing Units: ASTM C 90, most current revision.

1. Stretcher unit dimensions:
a. Nominal 4 inch high.
b. Nominal 16 inch long.
2. Normal weight
3. Integral metallic oxide pigments.
4. Integral polymer water repellent.
a. Manufacturers:
i. Dry-Block by W.R. Grace and Company (800) 588-7066.
ii. Substitution approval per the manufacturing location only.
5. Manufacturers and Suppliers:
a. Manufactured by an Oldcastle Company; contact National Accounts at (877) 506-2745
b. Colors:
i. Promenade Blend
ii. Earthtone Blend
iii. Sandlewood Blend
iv. Marous Blend
v. Richfield Blend
vi. Autumn Blend
vii. Heritage Blend
viii. Wilkesboro Blend
ix. Custom Color \qquad .
6. Substitutions: Not permitted.
B. Unit Design: Modular two core units sized as indicated and scheduled. Provide special units for bond beams, control and expansion joints, and lintels.
7. Provide units as required for indicated construction including sill units and solid cap units.
8. Provide units with exposed faces, which are uniform in appearance.

2.02 - REINFORCEMENT and ANCHORAGES

A. Horizontal Joint Reinforcement: ASTM A 951.

1. Minimum wire size W1.7 (9 gage) and maximum wire size W2.8 ($3 / 16$ inch wire).

02 . Width $11 / 2$ to 2 inches less than wall thickness.
03. Hot-dipped galvanized 1.5 oz . ASTM A 153, Class B2.
04. Contractor's option to use truss or ladder type.
B. Masonry Veneer Anchors: ASTM A 82.

1. Rectangular adjustable tie system with wall eyelet sections welded to horizontal joint reinforcement 16 inches on center maximum.
2. Minimum wire size W2.8 ($3 / 16$ inch wire).
3. Hot dipped galvanized 1.5 oz. ASTM A 153, Class B2.
4. Provide wall tie pintle sections, at least two, that fit into eyelet sections with maximum clearance of $1 / 16$ inch.
5. Maximum offset for pintle anchors 1-1/4 inch.
6. Provide pintle anchors of sufficient length to extend a distance at least $1 / 2$ inch onto the outer face shell of the masonry unit.
C. Deformed Bars: ASTM A 615, Grade 60.
7. Shop fabricate reinforcement shown as bent or hooked.

02 . Field bending not allowed.
D. Anchor Bolts and Threaded Rods: ASTM A 307. Embed in masonry as shown in Structural Drawings.
E. Bar Positioners for Vertical Wall Reinforcing Bars:

1. Minimum W. 17 (9 gage) galvanized wire.

2.03-ACCESSORIES

A. Joint Filler: Closed cell foam, oversized 50 percent, self-expanding.
B. Preformed Control Joint Filler

1. Materials:
a. ASTM D2000 rubber.
b. ASTM D 2287 PVC.
2. Provide 2-5/8 inch by 1-1/2 inch for regular joint.
3. Provide 2-5/8 inch by 1 inch for tee joint.
C. Preformed Expansion Joint Filler: [Reference to appropriate ASTM specifications should be added per joint filler manufacturers' recommendations: ASTM C 920, ASTM D 994, or ASTM D 1056, Class 2A1].
4. One Inch Expansion Joint: Secondary compression seal.
5. Materials
a. ASTM D 994 - Bituminous.
b. ASTM D 1056 - Cellular.
D. Through Wall Flashing:
6. Sheet copper combined with lead, total weight 7 ounces per sq. ft., laminated with asphalt and bonded both sides with creped surfaces and reinforced with interspersing fiberglass strands.
E. Adhesive: As Recommended by flashing material manufacturer.
F. Weeps: Galvanized steel or plastic tubes

2.04 - MASONRY FILL INSULATION

A. Granular Insulation:

1. ASTM C 516 vermiculite.

02. ASTM C 549 perlite.

B. Foamed-In-Place: Subject to compliance with project requirements and local jurisdictional restrictions, manufacturers offering Foam-In-place Insulation tested and found compatible and non-detrimental within the indicated Underwriters Laboratory fire resistance assemblies which may be incorporated into the Work include:

1. Manufacturers
2. Manufacturers - as approved by the architect.

PART III - EXECUTION

3.01 - INSPECTION

A. Verification: Prior to the start of masonry construction the Contractor shall verify:

1. Foundations are constructed with tolerances conforming to ACl 117.
2. Reinforcing dowels are positioned in accordance with Project Drawings.
3. Verify items provided by other sections of the work are properly sized and located.
B. Notification: If conditions are not met notify the Architect/Owners Representative.

3.02 - PREPARATION

A. Establish Lines, Levels, and Coursing:

1. Protect lines from disturbance.
2. Use non-corrosive materials in contact with masonry.
B. Surface Preparation: Prior to placing Quik-Brik ${ }^{*}$ remove laitance, loose aggregate or other materials that would prevent mortar from bonding to the foundation.

3.03 - COURSING

A. Placement: Place Quik-Brik ${ }^{8}$ to lines and levels indicated.
B. Uniformity: Maintain masonry courses to uniform width. Make vertical and horizontal joints equal and of uniform thickness.
C. Bond Patterns: Place Quik-Brik ${ }^{*}$ in $1 / 2$ running bond unless otherwise noted.
D. Course Height: Course one Quik-Brik* and one mortar joint equal to 4 inches.

3.04 - PLACING and BONDING

A. Bed and Head Joints:

1. Joint Thickness:
a. Construct $3 / 8$-inch bed and head joints unless otherwise indicated.
b. Construct bed joint at starting course on foundation not less than $1 / 4$ inch and not more than $3 / 4$ inch.
2. Fill holes not specified in exposed and below grade masonry with mortar.
3. Tool head and bed joints concave unless below grade or above ceiling height and to be concealed.
a. Use tool with large enough radius that joint is not raked free of mortar.
4. Remove masonry protrusions extending $1 / 2$ inch or more into cells or cavities to be grouted.
B. Unit Placement:
5. Quik-Brik*: Lay units with bed and head joints filled from the faces of the units to a distance in not less than the thickness of the face shell.
a. Webs are fully mortared in all courses of piers, columns, pilasters, starting course on footings or foundations, and where adjacent to cells or cavities to be reinforced or filled with concrete or grout.
b. Spread out full mortar bed, including areas under cells, for starting course on footings where cells are not to be grouted.
c. Vertical cells to be grouted are aligned and unobstructed openings for grout are provided in accordance with drawings.
6. Keep cavity airspace and weep holes clean of mortar, clean out promptly if mortar falls into cavity airspace or plugs weep holes.
7. In-Progress Cleaning:
a. Remove excess mortar.
b. Dry brush exposed masonry prior to the end of each work day.
c. Protect wall from mud splatter and mortar droppings.
i. Set scaffolds and scaffold boards so that mortar is not deflected onto masonry.
ii. At end of each work day turn scaffold boards so that rainwater is not deflected onto masonry.
d. Place Quik-Brik such that mortar does not run down the face of the wall or smear the masonry face.
8. Adjustments:
a. DO NOT shift or tap Quik-Brik ${ }^{\circ}$ after mortar has taken initial set.
b. Remove unit and mortar and replace.
9. After joints are tooled, cut off mortar tailings with trowel and dry brush excess mortar burrs and dust from the face of the masonry.
10. Fully bond external and internal corners and properly anchor intersecting walls.
11. Termination of Wall Height:
a. For fire-rated walls, construct walls to finish against bottom of roof or floor deck and fill voids with firestopping.
b. For other than fire-rated walls, cut units to match the slope of the roof deck and finish construction to within

2-inches of parallel to roof deck.
08. Isolate masonry partitions from vertical structural framing members with a control joint.

3.05 - TOLERANCES

Erect masonry within the following tolerances from specified dimensions:
A. Dimension of Elements:

1. In cross-section or elevation: $-1 / 4$ inch, $+1 / 2$ inch.
2. Mortar joint thickness:
a. Bed: plus or minus $1 / 8$ inch or plus $1 / 8$ inch.
b. Head: plus $3 / 8$ inch or minus $1 / 4$ inch.
c. Collar: plus $3 / 8$ inch or minus $1 / 4$ inch.
3. Grout space or cavity airspace except where passing framed construction: plus $3 / 8$ inch or minus $1 / 4$ inch.
B. Elements:
4. Variation from level:
a. Bed joints: plus or minus $1 / 4$ inch in 10 feet; plus or minus $1 / 2$ inch maximum.
b. Top of bearing walls: plus or minus $1 / 4$ inch in 10 feet; plus or minus $1 / 2$ inch maximum.
5. Variation from plumb: plus or minus $1 / 4$ inch in 10 feet; plus or minus $3 / 8$ inch in 20 feet; plus or minus $1 / 2$ inch max.
6. True to line: plus or minus $1 / 4$ inch in 10 feet; plus or minus $3 / 8$ inch in 20 feet; plus or minus $1 / 2$ inch maximum.
7. Alignment of columns and walls (bottom versus top):
a. Bearing: plus or minus $1 / 2$ inch.
b. Non-bearing: plus or minus $3 / 4$ inch.
C. Location of Elements:
8. Indicated in plan: plus or minus $1 / 2$ inch in 20 feet; plus or minus $3 / 4$ inch maximum.
9. Indicated in elevation: plus or minus $1 / 4$ inch in story height; plus or minus $3 / 4$ inch maximum.
D. Notification: If the above conditions cannot be met due to previous construction notify Architect/Owner's Representative.

3.06 - CUTTING and FITTING

A. Coordination: Cut and fit for bearing plates, chases, pipes, conduits, sleeves, and grounds. Coordinate with other sections of work to provide correct size and shape.
B. Notification: Prior to cutting and fitting any area not indicated or where appearance or strength of masonry work may be impaired, obtain approval from Architect/Owner's Representative.
C. Cutting Method: Perform jobsite cutting with proper tools to provide straight un-chipped edges and take care to prevent breaking masonry unit corners or edges.

3.07 - REINFORCEMENT and ANCHORAGES

A. Basic Requirements:

1. Place reinforcement and anchorages in accordance with the sizes, types, and locations indicated on the drawings, and as specified.
2. DO NOT Place dissimilar metals in contact with each other.
B. Details of Reinforcement:
3. Completely embed reinforcement in grout in accordance with Article 3.08.
4. Maintain clear distance between reinforcing bars and any face of masonry unit or formed surface: a. Not less than $1 / 4$ inch for fine grout.
b. Not less than $1 / 2$ inch for coarse grout.
5. Splice only where indicated on Drawings, unless otherwise specified.
6. DO NOT bend reinforcing bars after embedded in grout.
7. Place vertical reinforcing bars supported and secured against displacement by means of bar positioners.
8. Support bars other than vertical bars and tie to prevent displacement.

ECHELON

7. Placement tolerances:
a. Tolerances for the placement of reinforcing bars:
i. 1/2 inch when the distance from the centerline of the reinforcing bar to the opposite outside face of the masonry
is 8 inches or less.
ii. 1 inch when the distance from the centerline of the reinforcing bar to the opposite outside face of the masonry is 24 inches or less but more than 8 inches.
iii. $11 / 4$ inch when the distance from the centerline of the reinforcing bar to the opposite outside face of the masonry is more than 24 inches.
b. Place vertical reinforcing bars within 2 inches of required location along the length of the wall.
c. If it is necessary to move bars more than one bar diameter or a distance exceeding the tolerances provided in

Section 3.06.C.7.a. to avoid interference with other reinforcing bars, conduit, or embedded items, notify the Architect/ Owner's Representative for the acceptance of the resulting arrangement of bars.
C. Joint Reinforcement:

1. Placement:
a. Install joint reinforcement at 16 inches on center vertically, except space at 8 inches on center in parapet walls and below finished floor unless otherwise indicated on Drawings.
b. Place joint reinforcement continuous in first bed joints below top of masonry wall and bed joint 8 inches below first bed joint below top of wall.
c. Place joint reinforcement so that longitudinal wire are embedded in mortar:
i. Minimum cover of $1 / 2$ inch when not exposed to weather.
ii. Minimum cover of $5 / 8$ inch when exposed to weather or earth.
d. Lap joint reinforcement ends minimum 6 inches.
e. Do not extend joint reinforcement through control joints.
D. Wall Ties:
2. Embed ends of wall ties in mortar joints at least $1 / 2$ inch into outer face shell of hollow masonry construction.
3. Unless otherwise required, install adjustable wall ties in accordance with the following:
a. One tie for each 1.77 sq . ft . of wall area.
b. DO NOT exceed 16 in . on center horizontally or vertically.
4. Install wire ties perpendicular to a vertical line on the face of the wythe from which they protrude.
5. Unless otherwise provided, install additional unit ties around all openings larger than 16 inches in either dimension.

Space ties around the opening at a maximum of 3 feet on center and place ties within 12 inches of the opening.

3.08 - BUILT-IN and EMBEDDED ITEMS and ACCESSORIES

A. Incorporation: As work progresses build in metal doorframes, fabricated metal frames, window frames, anchor bolts, diaphragm anchors, embedded plates, and other items in the work supplied in other Sections.
B. Metal Door and Glazed Frames:

1. Embed anchors in mortar joints.
2. Fill frame void solid with grout.
3. Fill masonry cores with grout minimum 12 inches from framed openings.
C. Chases: Construct chases as masonry units are laid.
D. Pipes and Conduits: When required, place pipes and conduits passing horizontally through masonry beams or walls in steel sleeves or cored holes.
4. Place pipes and conduits passing horizontally through non-load-bearing partitions piers, pilasters, or columns.
5. When required, place horizontal pipes and conduits in and parallel to the plane of the masonry wall.
E. Accessories: Install and secure connectors, flashing, weep holes, nailing blocks, reglets and other accessories.
6. Install reglet level and parallel to building lines. Set reglet as indicated on Drawings to coordinate with sloped roof surface. F. Organic Materials: Do not build in organic materials subject to deterioration.

3.09 - GROUT PLACEMENT

A. Placement:

1. Place grout within $11 / 2$ hours of introducing mixing water and prior to initial set.
2. Prevent grout from flowing onto or otherwise staining faces of CMU intended to be exposed.
B. Confinement: Confine grout to the areas indicated on the Drawings.
C. Grout Pour Height: Use fine or coarse grout in accordance with requirements in Section 04070.
D. Grout Lift Height: Place grout in lifts not to exceed 5 feet.
E. Consolidation: Consolidate grout at the time of placement.
3. Consolidate grout pours 12 inches or less in height by mechanical vibration or puddling.
4. Consolidate grout pours exceeding 12 inches in height by mechanical vibration and reconsolidate by mechanical vibration after initial water loss and settlement has occurred.

3.10 - BRACING

A. Design and Installation: Design, provide and install bracing for walls, lintels, and other masonry work that will assure stability of masonry during construction.
B. Duration: Maintain bracing in place until roof or other structural elements are complete and provide permanent support.

3.11 - MASONRY FILL INSULATION

A. Install insulation in masonry unit cells of exterior walls.
B. Granular Fill Insulation:

1. Verify that holes and openings have been sealed to prevent escape of insulation.
2. Place masonry fill insulation in accordance with manufacturer's instructions.
3. Ensure spaces are free of mortar to allow free flow of insulation.
4. Place as masonry is erected, completely filling spaces. Place in lifts and rod to eliminate air pockets. Place prior to covering cores with bond beams or lintels.
5. Place temporary signs on face of insulated walls warning workers to use caution to prevent loss of insulation if cutting into walls.
C. Foamed-In-place Insulation:
6. Confirm that selected foam insulation material is compatible and non-detrimental to referenced fire resistance assemblies before use.
7. Installer shall be certified and/or approved by manufacturer of insulation. Install foam insulation in strict accordance with manufacturer's published instructions.
8. Pump foam insulation bored into mortar joints around entire wall area 3 feet from floor level. Repeat at height no greater than 10 feet until completion of wall area.
9. Plug holes with mortar after completion.
D. Blown-In Expanded Polystyrene Bead Insulation:
10. Verify that holes and openings have been sealed to prevent escape of insulation.
11. Installer shall be certified or approved by manufacturer of insulation.
12. Install expanded polystyrene beads in accordance with manufacturer's published instructions.
13. Blow-in expanded polystyrene beads from top of wall prior to installation of bond beams.

3.12 - LINTELS

A. Steel Lintels:

1. Install loose steel lintels as scheduled.
2. Provide 9 gage Z-ties at each vertical joint of soap units covering steel lintels. Weld Z-ties to web of steel lintel.
B. Concrete Masonry Lintels:
3. Install reinforced unit masonry lintels over openings where steel lintels are not scheduled.
4. Construct lintels using grout fill and reinforcing.
a. Maintain minimum 8 inch bearing on each side of opening unless otherwise noted on Drawings.
b. Use reinforcing bars of one-piece lengths only.
c. Place and consolidate grout without disturbing reinforcing.
5. Allow lintels to reach strength before removing temporary supports.

3.13 - MOVEMENT JOINTS

A. Control Joints:

1. DO NOT continue bond beams or joint reinforcing across control joints.
2. Install preformed control joint filler at locations indicated on Drawings.
3. Use proper size material to create sealant joint space.
4. Backer rod and sealant installed in accordance with Section 07900.
B. Expansion Joints:
5. Install expansion joint filler material on centerline of wall at locations indicated on Drawings.
6. Backer rod and sealant installed in accordance with section 07900.
C. Seismic Joints:
7. Provide seal and cover at both faces of joint, as indicated on Drawings.
8. Secure seal to face of wall.
9. Provide un-faced batt insulation in cavity between exterior and interior seal.
10. Provide fire barrier blanket in cavity between exterior and interior seals of fire-rated separation wall.

3.14 - CLEANING

A. In-Progress Cleaning: Clean unit masonry as Work progresses by dry brushing to remove mortar fins and smears before tooling joints as described in Article 3.04.B.3.
B. Final Cleaning:

1. After mortar has set, reached initial curing; within 7 days of completion of work for custom masonry units, clean exposed masonry as follows:
a. Remove large mortar particles by hand with wooden paddles and non-metallic scrape hoes or chisels.
b. Cut out any defective mortar joints and holes and re-point with mortar.
c. Protect non-masonry surfaces from contact with cleaning solution by covering them with liquid strippable masking agent, polyethylene film, or waterproof masking tape.
2. Clean Quik-Brik ${ }^{\circ}$ with proprietary masonry cleaner.
a. Materials:
i. Custom Concrete Brick Cleaner, by Prosoco, Kansas City, Missouri (800) 255-4255, diluted one part cleaning solution to at least three parts water.
ii. NMD 80, by EaCo Chem Inc, New Castle, Pennsylvania (800) 313-8505, diluted one part cleaning solution to four parts water.
b. Thoroughly wet surface of masonry.
c. Scrub using non-metallic brushes
d. Immediately rinse with water.
e. Do small sections at a time.
f. Work from top to bottom.
3. DO NOT use high pressure cleaning methods.
a. DO NOT exceed nozzle pressure of 500 psi .
b. Use water flow of at least 4 gallons per minute.
c. Use at least 40° fan nozzle.
d. Keep nozzle at least 18 -inches from face of Quik-Brik*.
4. Cleaned surfaces shall appear as represented by mockup wall panel.

3.15 - SEALING

1. Seal Quik-Brik ${ }^{*}$ with proprietary masonry cleaner
a. Materials
i. Customer Masonry Sealer, by Prosoco, Kansas City, Missouri (800) 255-4255, follow manufacturer's recommendations for applying

3.16 - PROTECTIONS

A. External Corners: Maintain protective boards at exposed external corners that may be damaged by construction activities. 01. Provide protection without damaging work.
B. Base of Walls: Protect the base of walls from rain-splashed mud and mortar droppings,
C. Environmental: At end of day, cover completed masonry to prevent moisture infiltration. Use the following provisions unless otherwise required for environmental conditions, Section 106:

D. Load Application:

1. DO NOT apply uniform floor or roof loading for at least 12 hours after building masonry columns or walls
2. DO NOT apply concentrated loads for at least three days after building masonry columns or walls

3.17 - FIELD QUALITY CONTROL

A. Masonry: Required testing will be in accordance with Section 01450.

(

(
eNewsletter
August 2012

Also In This
Issue
Quik-Brick SmartBIM

Quik-Brik Brand
Refresh
Industry News
Continuing
Education

Case Study: Walmart Supercenter - Louisville, KY
When Walmart chose to open a large-scale Supercenter in Louisville, KY, they were challenged to find a product that was strong, durable, stylish, welcoming to customers, and cost-effective. Their desire to provide customers with an overall pleasant shopping experience included the important component of an aesthetically appealing storefront. Quik-Brik helped meet Walmart's construction goals, timeline and budget by providing the look of brick in a mere twelve weeks. Unlike traditional brick, Quik-Brik is a one-piece structural masonry unit, so it saves installation time and conserves materials.

Architect:
Boice Raidl Rhea Architects General Contractor: Colcon Industries Masonry Contractor: Holland \& Fox Masonry

Quik-Brik Now Part of SmartBIM Library

BIM, which stands for "building information modeling," is revolutionizing the building industry, and Oldcastle is leading the way in helping designers and builders meet the growing demand for this innovative technology. Created for use with CAD design software programs such as Autodesk Revit Architecture®, BIM libraries provide specific product information to allow 3-D renderings of design projects that include spatial information, product specification, color palettes, blend patterns and

